Search results for "Purine nucleoside phosphorylase"

showing 8 items of 8 documents

Origin of Enzymatic Kinetic Isotope Effects in Human Purine Nucleoside Phosphorylase

2017

Here we report a study of the effect of heavy isotope labeling on the reaction catalyzed by human purine nucleoside phosphorylase (hPNP) to elucidate the origin of its catalytic effect and of the enzymatic kinetic isotope effect (EKIE). Using quantum mechanical and molecular mechanical (QM/MM) molecular dynamics (MD) simulations, we study the mechanism of the hPNP enzyme and the dynamic effects by means of the calculation of the recrossing transmission coefficient. A free energy surface (FES), as a function of both a chemical and an environmental coordinate, is obtained to show the role of the environment on the chemical reaction. Analysis of reactive and nonreactive trajectories allows us …

010304 chemical physicsChemistryPurine nucleoside phosphorylasevariational transition state theoryGeneral Chemistry010402 general chemistryenzyme catalysis01 natural sciencesChemical reactionCatalysis0104 chemical sciencesEnzyme catalysisCatalysisSolventMolecular dynamicsComputational chemistryenzymatic kinetic isotope effect0103 physical sciencesKinetic isotope effectMoleculeQM/MM methodsprotein motionsACS Catalysis
researchProduct

Guanosine negatively modulates the gastric motor function in mouse

2013

The aim of the present study was to evaluate if guanine-based purines may affect the gastric motor function in mouse. Thus, the influence of guanosine on the gastric emptying rate in vivo was determined and its effects on spontaneous gastric mechanical activity, detected as changes of the intraluminal pressure, were analyzed in vitro before and after different treatments. Gastric gavage of guanosine (1.75-10 mg/kg) delayed the gastric emptying. Guanosine (30 μM-1 mM) induced a concentration-dependent relaxation of isolated stomach, which was not affected by the inhibition of the purine nucleoside phosphorylase enzyme by 4'-deaza-1'-aza-2'-deoxy-1'-(9-methylene)-immucillin-H. The inhibitory …

Malemedicine.medical_specialtyPurine nucleoside phosphorylaseGuanosineAdenosine receptor antagonistSettore BIO/09 - FisiologiaAdenylyl cyclaseMiceCellular and Molecular Neurosciencechemistry.chemical_compoundInternal medicineCyclic AMPmedicineAnimalsCyclic adenosine monophosphateMolecular BiologyDose-Response Relationship DrugGuanosineGastric emptyingChemistryStomachMuscle SmoothCell BiologyAdaptation PhysiologicalAdenosine receptorMice Inbred C57BLguanosine stomach relaxationEndocrinologyGastric EmptyingOriginal ArticleGastrointestinal MotilitySoluble guanylyl cyclasePurinergic Signalling
researchProduct

Investigating the Role of Guanosine on Human Neuroblastoma Cell Differentiation and the Underlying Molecular Mechanisms

2021

Neuroblastoma arises from neural crest cell precursors failing to complete the process of differentiation. Thus, agents helping tumor cells to differentiate into normal cells can represent a valid therapeutic strategy. Here, we evaluated whether guanosine (GUO), a natural purine nucleoside, which is able to induce differentiation of many cell types, may cause the differentiation of human neuroblastoma SH-SY5Y cells and the molecular mechanisms involved. We found that GUO, added to the cell culture medium, promoted neuron-like cell differentiation in a time- and concentration-dependent manner. This effect was mainly due to an extracellular GUO action since nucleoside transporter inhibitors r…

NeuriteCellular differentiationGuanosinePurine nucleoside phosphorylaseRM1-950Nucleoside transporterSettore BIO/09 - Fisiologiachemistry.chemical_compoundneuroblastomaguanine guanosine guanylate cyclase heme oxygenase neuroblastoma protein kinase C purine nucleoside phosphorylase SH-SY5YdifferentiationNucleòsidsExtracellularPharmacology (medical)guaninePharmacologybiologyMarcadors tumoralsNucleosidesSH-SY5YdifferentiationBrief Research Reportheme oxygenasepurine nucleoside phosphorylaseCell biologyguanylate cyclaseguanosinechemistryCell cultureTumor markersSettore BIO/14 - Farmacologiabiology.proteinTherapeutics. PharmacologyNucleosideprotein kinase C
researchProduct

Guanine inhibits the growth of human glioma and melanoma cell lines by interacting with GPR23

2022

Guanine-based purines (GBPs) exert numerous biological effects at the central nervous system through putative membrane receptors, the existence of which is still elusive. To shed light on this question, we screened orphan and poorly characterized G protein-coupled receptors (GPRs), selecting those that showed a high purinoreceptor similarity and were expressed in glioma cells, where GBPs exerted a powerful antiproliferative effect. Of the GPRs chosen, only the silencing of GPR23, also known as lysophosphatidic acid (LPA) 4 receptor, counteracted GBP-induced growth inhibition in U87 cells. Guanine (GUA) was the most potent compound behind the GPR23-mediated effect, acting as the endpoint eff…

Pharmacologyantiproliferative effectspurine nucleoside phosphorylase (PNP)G protein-coupled receptor 23 (GPR23)glioma cell linesSettore BIO/14 - Farmacologiaguanine-based purines (GBPs)Pharmacology (medical)melanoma cell linesMelanomaguanine (GUA)lysophosphatidic acid (LPA)
researchProduct

Uptake and Metabolism of Purine Nucleosides and Purine Nucleoside Analogues by Cells

1979

Since the discovery of purine nucleotides and purine nucleosides, 1847 by Liebig (1) (inosinic acid) and 1885 by Schulze et al. (2) (guanosine),it was only relatively recently that purine- and purine-nucleoside analogues have been considered to be effective antitumor or antiviral agents. It is due to Prusoff, Schabel and S.S. Cohen that on the other hand pyrimidine nucleoside analogues have already been used clinically as drugs for a number of years.

Purinechemistry.chemical_classificationbiologyPurine nucleoside phosphorylasePurine analogueGuanosinechemistry.chemical_compoundInosinic acidAdenosine deaminasechemistryBiochemistrybiology.proteinNucleotideNucleoside
researchProduct

Guanosine 5′-diphosphate 3′-diphosphate (ppGpp) as a negative modulator of polynucleotide phosphorylase activity in a ‘rare’ actinomycete

2010

With the beginning of the idiophase the highly phosphorylated guanylic nucleotides guanosine 5'-diphosphate 3'-diphosphate (ppGpp) and guanosine 5'-triphosphate 3'-diphosphate (pppGpp), collectively referred to as (p)ppGpp, activate stress survival adaptation programmes and trigger secondary metabolism in actinomycetes. The major target of (p)ppGpp is the RNA polymerase, where it binds altering the enzyme activity. In this study analysis of the polynucleotide phosphorylase (PNPase)-encoding gene pnp mRNA, in Nonomuraea sp. ATCC 39727 wild-type, constitutively stringent and relaxed strains, led us to hypothesize that in actinomycetes (p)ppGpp may modulate gene expression at the level of RNA …

biologyGuanosinePurine nucleoside phosphorylaseRNAMicrobiologyMolecular biologyGuanosine Tetraphosphatechemistry.chemical_compoundchemistryBiochemistryPolynucleotideRNA polymerasebiology.proteinbacteriaheterocyclic compoundsPolynucleotide phosphorylaseMolecular BiologyPolymeraseMolecular Microbiology
researchProduct

Nucleotide, Nucleoside, Purine, Pyrimidine, Pteridine

1952

Die Organe erwachsener Tiere enthalten zumeist mehr Ribonucleotide als Desoxyribonucleotide (Tabelle 159). Der Quotient RN : DRN ist in fetalen Geweben kleiner als in erwachsenen. J. Geschwind und C. H. Li fanden ihn in der fetalen Rattenleber zu 0,9, in der Leber neugeborener Ratten zu 1,9 und in der Leber 40 Tage alter Ratten zu 2,8.

chemistry.chemical_classificationPyrimidine analogueTransition (genetics)chemistryPurine/pyrimidinePyrimidine metabolismmedicinePurine nucleoside phosphorylaseNucleotideMolecular biologyNucleosidePteridinemedicine.drug
researchProduct

Editorial: Emerging heterocycles as bioactive compounds

2023

Heterocycles represent a privileged scaffold due to their ability to interact with biological systems via heteroatoms. It is no coincidence that every year the Food and Drug Administration approves numerous new drugs that contain at least one heterocyclic system as active pharmacophoric part in their structure. Many heterocyclic compounds with therapeutic properties, including anticancer, antimicrobial, anti-inflammatory and so on, come from natural sources such as plants and animals, and medicinal chemists very often use them to study their chemical space and improve their biological activity. In fact, several efficient approaches for the formation of aromatic heterocyclic compounds and th…

heterocycles new chemical entities natural products purine nucleoside phosphorylase pantetheinase sulfhydrylase activity quinazolineGeneral ChemistrySettore CHIM/08 - Chimica FarmaceuticaFrontiers in Chemistry
researchProduct